Language Models Based on Semantic Composition
نویسندگان
چکیده
In this paper we propose a novel statistical language model to capture long-range semantic dependencies. Specifically, we apply the concept of semantic composition to the problem of constructing predictive history representations for upcoming words. We also examine the influence of the underlying semantic space on the composition task by comparing spatial semantic representations against topic-based ones. The composition models yield reductions in perplexity when combined with a standard n-gram language model over the n-gram model alone. We also obtain perplexity reductions when integrating our models with a structured language model.
منابع مشابه
Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کاملAdvertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملPrototype component models and composition technology toolset for integration of logic-programming-like REWERSE languages
Any software composition system requires, among other things, a component model, which describes how components look and how they can be interfaced with each other. Previously, the component models for languages have been hand-written. We demonstrate a prototype tool for automatic derivation of a component model for any language given the description of the language as a meta-model in the Web O...
متن کاملAn Executive Approach Based On the Production of Fuzzy Ontology Using the Semantic Web Rule Language Method (SWRL)
Today, the need to deal with ambiguous information in semantic web languages is increasing. Ontology is an important part of the W3C standards for the semantic web, used to define a conceptual standard vocabulary for the exchange of data between systems, the provision of reusable databases, and the facilitation of collaboration across multiple systems. However, classical ontology is not enough ...
متن کاملDeep Learning for Semantic Composition
Learning representations to model the meaning of text has been a core problem in natural language understanding (NLP). The last several years have seen extensive interests on distributional approaches, in which text spans of different granularities are encoded as continuous vectors. If properly learned, such representations have been shown to help achieve the state-of-the-art performances on a ...
متن کامل